Plant adaptations to severely phosphorus-impoverished soils.

نویسندگان

  • Hans Lambers
  • Enrico Martinoia
  • Michael Renton
چکیده

Mycorrhizas play a pivotal role in phosphorus (P) acquisition of plant roots, by enhancing the soil volume that can be explored. Non-mycorrhizal plant species typically occur either in relatively fertile soil or on soil with a very low P availability, where there is insufficient P in the soil solution for mycorrhizal hyphae to be effective. Soils with a very low P availability are either old and severely weathered or relatively young with high concentrations of oxides and hydroxides of aluminium and iron that sorb P. In such soils, cluster roots and other specialised roots that release P-mobilising carboxylates are more effective than mycorrhizas. Cluster roots are ephemeral structures that release carboxylates in an exudative burst. The carboxylates mobilise sparingly-available sources of soil P. The relative investment of biomass in cluster roots and the amount of carboxylates that are released during the exudative burst differ between species on severely weathered soils with a low total P concentration and species on young soils with high total P concentrations but low P availability. Taking a modelling approach, we explore how the optimal cluster-root strategy depends on soil characteristics, thus offering insights for plant breeders interested in developing crop plants with optimal cluster-root strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot

South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a...

متن کامل

Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits.

BACKGROUND Global phosphorus (P) reserves are being depleted, with half-depletion predicted to occur between 2040 and 2060. Most of the P applied in fertilizers may be sorbed by soil, and not be available for plants lacking specific adaptations. On the severely P-impoverished soils of south-western Australia and the Cape region in South Africa, non-mycorrhizal species exhibit highly effective a...

متن کامل

Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency.

Proteaceae species in south-western Australia occur on severely phosphorus (P)-impoverished soils. They have very low leaf P concentrations, but relatively fast rates of photosynthesis, thus exhibiting extremely high photosynthetic phosphorus-use-efficiency (PPUE). Although the mechanisms underpinning their high PPUE remain unknown, one possibility is that these species may be able to replace p...

متن کامل

Metabolic adaptations to arsenic-induced oxidative stress in Isatis cappadocica. Naser Karimi* and Zahra Souri

Arsenic is considered as one of the most important environmental contaminant elements. Some plant species can grow in arsenic contaminated soils and they are able to reduce arsenic toxicity. In this study, a hydroponic experiment was conducted on Isatis cappadocica, a newly-discovered As hyperaccumulator. Accordingly, we conducted this experiment to compare the interaction of effect of arsenic ...

متن کامل

Update on phosphorus nutrition in Proteaceae. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops?

Australia harbors some of the most nutrient-impoverished soils on Earth. Southwestern Australian soils are especially phosphorus (P) impoverished, due to the age of this ancient landscape and it being unaffected by major geological disturbance for millions of years (Hopper, 2009; Lambers et al., 2010). We are only now beginning to understand how plants acquire and use P in such highly infertile...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in plant biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015